Time Management Update
AMG-16
December 17, 1996

Richard Fujimoto
Georgia Institute of Technology




Time Management Update

« Joint meeting with Data Distribution and Management (DDM) Group,
12/16/96

 Time Management Topics
— Synchronized Data Distribution & Management (status report)

— Zero lookahead and repeatable executions (changes to support
zero lookahead, while maintaining repeatability)




Synchronized DDM: Problem Description

DDM: For each state update, which federates receive messages?

« example: a federate that can “see” a tank should be notified of the tank’s
position updates

« set of destinations for attribute updates changes during the execution

Example: Two tanks (red and blue) approaching each other in a DIS-style federation

wallclock time 10 (e.g., blue tank updates its

/ red tank becomes visible to blue tank at
subscription region)

Fed. A: red tank

blue tank begins receiving position updates at
wallclock time 10
Fed. B: blue tank —

10 federate time (= wallclock time)

Currently: DDM changes take effect everywhere at an instant in wallclock time

» federate time same as wallclock time (modulo offset, scale factor)

« all federates at (approx.) same federate time at any instant during the execution

« DDM changes (who receives messages?) take effect at an instant in wallclock time

* implementation: immediately realize changes (e.g., modify multicast groups) for all
affected federates, ideally in a single instant of wallclock time

e currently supported in baseline HLA




Synchronized DDM: Problem Description (cont.)

: red tank becomes visible to blue tank at
/ logical time 10

Fed. A: red tank I

blue tank has not yet reached logical time 10,
5 RTI cannot know blue tank will be able to see it.
Fed. B: blue tank IINGIhhh>l : red tank position is not sent to blue tank!

10 federate time (= logical time)

Logical time federation: DDM semantics based on logical time

« different federates are at different logical times at any instant during
the execution

« DDM changes take effect at a specific instant in logical time

e unless precautions are taken, a federate may not receive messages it
should have received (or it may receive messages it shouldn’t have
received)

* logical time based DDM not currently supported in baseline HLA




A Solution Approach

« RTI maintains log of messages, sends them to federates as needed
 RTI may also retract previously sent messages

/ position update message is logged,

: but is not sent to blue tank
Fed. A: red tank H

Iog

Fed. B: blue tank I

10 federate time (= logical time)

Later in the execution:

Fed. A: red tank —

Idg red tank becomes visible at logical time 10

(blue tank changes subscription region)
M RTI retrieves message from log and sends to blue tank
Fed. B: blue tank I

10 federate time (= logical time)



Current Status

Two additional solution approaches have been identified that do not
require message logs, but place some additional constraints on
federates

e require lookahead to “set up” filter changes before updates can occur
(constrains when updates are generated)

e require federate to query other federates to receive “missed”
information

Prototyping Efforts

 Initial prototype using logging implemented at Georgia Tech,
experimentation in progress

« Other approaches still under development




Zero Lookahead and Repeatability:
Requirements

 allow zero lookahead

« repeatability: must be possible to build federations that produce the
same results on each execution (analytic federations)

— accounting purposes, facilitate debugging

— In general, execution will be repeatable if:
e same Initial conditions and external inputs provided
e event processing computation in each federate is repeatable
» each federate processes events in time stamp order, and

e events containing the same time stamp (simultaneous events)
are processed in the same order in each execution

e Federation control of simultaneous events: The proper ordering of
simultaneous events should be controlled by federates, not the RTI

« Avoidance of logical time creep (performance issue)
— already addressed in Version F.0 of the RTI

Issue: repeatable, federate controlled ordering of simultaneous events




Current Approach (Repeatability): Non-Zero Lookahead

 RTI delivers all simultaneous events before issuing a Time Advance
Grant (requires non-zero lookahead)

* Federate sorts simultaneous events containing the same time stamp
In a repeatable fashion, and processes events in that order

» Above provides sufficient capability for (1) repeatable executions, and
(2) federate controlled ordering of simultaneous events

2. Federate A sends a zero lookahead
message (time stamp T) requesting
information from another federate

,’ /3. Federate B sends reply messagé R
with time stamp T (zero lookahead)
to Federate A. '

1. RTl issues Time
Advance Grant
totime T

The “rub”: with zero lookahead, RTI cannot guarantee delivery of all
simultaneous events with time stamp T when issuing a Time Advance

Granttotime T




Extensions to Support Zero Lookahead

» Existing services (Next Event Request, Time Advance Request) remain
the same

— grant to time T guarantees delivery of all messages w/ time stamp T

— constraint: once a Time Advance Grant to time T is issued for these
requests, all subsequent messages sent by the federate must have
time stamp strictly greater than T.

« Two new services:
— Next Event Request Available and Time Advance Request Available

— Same as Next Event Request and Time Advance Request except
grant to logical time T does not guarantee delivery of all events with
time stamp T

— Federate may send new messages with time stamp equal to T (zero
lookahead)

« federate defined “ordering parameter” under consideration
e “upward compatibility” with existing RTI prototypes important

Prototyping experiments under development




